

Schäfer + Peters GmbH

TECHNISCHE INFORMATION VON ROST- UND SÄUREBESTÄNDIGEN VERBINDUNGSELEMENTEN

TECHNICAL INFORMATION

I. DIN - ISO - Normen und derer Bedeutung

- a) Begriff Normung
- b) Organisation und Herausgeber von Normen
 - ► Tab. 1 Vielfältigkeit von Normen
- c) Was sagt eine DIN Norm aus?
- d) Eigenschaften von Edelstahlschrauben bei erhöhten Temperaturen
 - ► Tab. 2 Änderungen bei Normen im Überblick
 - ► Tab. 3 Änderungen bei Sechskantschrauben und -muttern
 - ► Tab. 4 Änderungen bei den Maßen von Sechskantschrauben und –muttern
 - ► Tab. 5 Änderungen bei Metrischen Kleinschrauben
 - ► Tab. 6 Änderungen bei Stiften und Bolzen
 - ► Tab. 7 Änderungen bei Blechschrauben
 - ► Tab. 8 Änderungen bei Gewindestiften
 - ► Tab. 9 Technische Lieferbedingungen und Grundnormen1

II. Mechanische Eigenschaften von Edelstahl Rostfrei

- a) Das Bezeichnungssystem der austenitischen Stahlgruppe nach ISO
 - ▶ Tab. 10 Gängige nichtrostende Stähle und ihre Zusammensetzung
- b) Klassifizierung der Festigkeit von Edelstahlschrauben
 - ► Tab. 11 Auszug aus DIN EN ISO 3506-1
- c) Streckgrenzlasten für Schaftschrauben
 - ► Tab. 12 Streckgrenzlasten für Schaftschrauben
- d) Eigenschaften von Edelstahlschrauben bei erhöhten Temperaturen
 - ► Tab. 13 Festigkeitsklasse 70
- e) Anhaltswerte für Anzugsdrehmomente und derer Reibungszahlen
 - ► Tab. 14 Anhaltswerte für Anzugsdrehmomente
 - ► Tab. 15 Reibungszahlen µG und µK für Schrauben aus rost- und säurebeständigem Stahl
 - ▶ Tab. 16 Reibungszahlen µG und µK für Schrauben und Muttern aus rost- und säurebeständigem Stahl
- f) Magnetische Eigenschaften von austenitischen nichtrostendem Edelstahl

III. Korrosionsbeständigkeit von Edelstahl Rostfrei A2 und A4

- a) Fremdrost und seine Entstehung
- b) Spannungsrisskorrosion
- c) Flächenabtragende Korrosion
- d) Lochfraßkorrosion
- e) Kontaktkorrosion
- f) Korrosive Medien in Verbindung mit A2 und A4
 - ► Tab. 17 Übersicht über die chemische Beständigkeit von A2 und A4
 - ► Tab. 18 Einteilung des Beständigkeitsgrades in verschiedenen Gruppen

IV. Auszug aus der bauaufsichtlichen Zulassung Z-30.3-6 vom 20. April 2009 "Erzeugnisse, Verbindungsmittel und Bauteile aus nichtrostenden Stählen"

- ► Tab. 19 Einteilung der Stahlsorten nach Festigkeitsklassen und Korrosionswiderstandsklassen
- ► Tab. 20 Werkstoffauswahl bei atmosphärischer Exposition
- ► Tab. 21 Stahlsorten für Verbindungsmittel mit Zuordnung zu Stahlgruppen nach DIN EN ISO 3506 Teile 1 und 2 sowie Kennzeichnung nach Abschnitt 2.2.2 und maximale Nenndurchmesser

V. Kennzeichnung von nichtrostenden Schrauben und Muttern

I. DIN - ISO - Normen und deren Bedeutung

a) Begriff Normung

Der Begriff "Normung", auch Standardisierung genannt, liegt in der einfacheren Arbeit mit genormten Bauteilen, da diese untereinander austauschbar sind. Dazu ist es notwendig, dass die grundlegenden Eigenschaften von Normteilen von einer Zentralstelle festgelegt und von Herstellern und Handel verwendet werden.

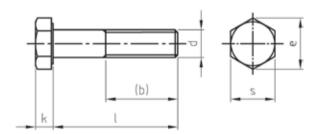
b) Organisationen und Herausgeber von Normen

Tab. 1: Vielfältigkeit von Normen

Norm	Information
DIN-Norm	Herausgeber: Deutsches Institut für Normung = nationale, deutsche Norm DIN-Normen werden neben Verbindungselementen auch für elektrische Bausteine oder organisatorische Methoden vergeben. DIN-Normen sind in Deutschland immer noch "üblich", wenngleich die Umstellung auf ISO-Normen sich durchsetzen wird. DIN-Normen werden weiter bestehen für Teile, welche nicht nach ISO-/EN- genormt sind oder kein Normungsbedarf vorliegt.
ISO-Norm	Herausgeber: ISO (Internationale Organisation für Standardisierung, engl. International Organization for Standardization). = internationale Norm Der Begriff "ISO" stammt vom griechischen Begriff für "gleich" ab. ISO-Normen haben weltweit Gültigkeit und eignen sich daher zur Verwendung im Welthandel. Wenngleich die ISO-Normung immer mehr an Bedeutung gewinnt, war lange Zeit die Deutsche DIN Standard in Sachen Normung weltweit.
EN-Norm	Herausgeber: Europäisches Komitee für Normung = europäische Norm Sinn hinter der EN war die Schaffung "gleicher" Voraussetzungen für den europäischen Binnenhandel. Anders als ISO-Normen haben EN-Normen nur Gültigkeit innerhalb der Europäischen Union. Das CEN versucht, Normenidentität zwischen der EN und ISO-Norm herzustellen. Grundsätzlich sollen vorhandene ISO-Normen unverändert als EN-Normen mit der ISO-Normnummer übernommen werden EN ISO. Gelingt das auf europäischer Normungsebene nicht, werden eigenständige EN-Normen mit von ISO abweichenden EN-Normnummern erstellt.
DIN-EN- Norm	= nationale deutsche Ausgabe einer unverändert übernommenen EN-Norm ist eine Normenmischung, welche besagt, dass die Normennummer (z.B. 12345) das gleiche Objekt sowohl in der DIN-Norm, als auch der EN-Norm bezeichnet.
DIN-EN- ISO-Norm	= nationale deutsche Ausgabe einer unverändert übernommenen EN-Norm Ist eine Normenmischung, welche besagt, dass die Normennummer (z. B. 12345) das gleiche Objekt sowohl in der DIN-Norm, EN-Norm als auch der ISO-Norm bezeichnet.
DIN-ISO- EN	= Nationale deutsche Ausgabe einer unverändert übernommenen ISO-Norm.

c) Was sagt eine DIN-Norm aus?

Wie jede Norm bringt die DIN-Norm Standardisierung und Einfachheit mit sich. So ist es ausreichend, bei einer Anfrage "DIN 933, M12 x 40, A4-70" anzugeben, um eine Vielzahl an Merkmalen festzulegen. Dadurch muss man nicht immer die Anforderungen an ein Produkt gegenprüfen und der Kunde kann sicher sein, dass er exakt die Ware erhält, welche er bestellt hat.


Normen definieren mindestens eines der folgenden Merkmale:

Kopfform (z. B. Außensechskant, Innensechskant, Linsensenkkopf) Gewindeart (z. B. Metrisches ISO-Regelgewinde M, Blechgewinde)

Gewindelänge Gewindesteigung

Werkstoff und Festigkeitsklasse

Mögliche Beschichtungen oder Festigkeitseigenschaften

- b = Gewindelänge bei Schrauben, deren Gewinde nicht zum Kopf reicht (Teilgewindeschrauben)
- d = Gewindedurchmesser in mm
- e = Eckmaß am Kopf
- k = Kopfhöhe
- I = Nennlänge der Schraube zeigt zugleich an, wie die Länge einer Schraube gemessen wird.
- S = Schlüsselweite

Ein Beispiel soll erläutern, was durch die folgende Angabe ausgedrückt wird:

DIN 931, M 12 x 40, A4-70

DIN 931 = Sechskantschraube mit Schaft
M = metrisches ISO-Gewinde

12 = d... Gewindedurchmesser der Schraube von 12 mm

X 40 = I... Nennlänge in mm

A4 = Werkstoffklasse, Rostfreier Stahl A4

- 70 = Festigkeitsklasse 70

P = Die Gewindesteigung wird durch eine Zahl angegeben. Fehlt diese Zahl, so wird ein Regelgewinde bezeichnet. (M 12 x 40). Nur bei Schrauben mit abweichendem

Regelgewinde wird die Steigung angegeben, z. B. M 12 x 1 x 40 bezeichnet eine

d) Normenänderung (DIN > EN > ISO)

Während die früheren DIN-Normen als ausschließlich deutsche Normvorschriften galten, wurde nun mit der EN und der ISO-Norm eine Norm auf europäischer und weltweiter Ebene eingeführt. Bei vielen ISO-Normen waren die DIN-Normen Vorbild; viele Normen wurden jedoch erst mit der ISO-Norm eingeführt (z. B. ISO 7380). Die Umstellung im Handel erfolgt fließend, die Produktion von DIN und ISO-Artikeln erfolgt nebeneinander.

Tab. 2: Änderungen bei Normen im Überblick:

DIN → ISO

(Vergleichende Gegenüberstellung)

 $\textcolor{red}{\textbf{ISO}} \rightarrow \textbf{DIN}$

(Vergleichende Gegenüberstellung)

DIN	ISO	DIN	ISO	DIN	ISO	ISO	DIN	ISO	DIN	ISO	DIN
1	2339	916	4029	1481	8752	1051	660/661	4036	439	8673	934
7	2338	931	4014	6325	8734	1207	84	4161	6923	8673	971
84	1207	933	4017	6914	7412	1234	94	4762	912	8673	971-1
85	1580	934	4032	6915	7414	1479	7976	4766	551	8674	971-2
94	1234	934	8673	6916	7416	1481	7971	7038	937	8676	961
125	7089	937	7038	6921	8100	1482	7972	7040	982	8677	603
125	7090	960	8765	6923	4161	1483	7973	7040	6924	8733	7979
126	7091	961	8676	6924	7041	1580	85	7042	980	8734	6325
417	7435	963	2009	6925	7042	2009	963	7042	6925	8735	7979
427	2342	964	2010	7343	8750	2010	964	7045	7985	8736	7978
433	7092	965	7046	7343	8751	2338	7	7046	965	8737	7977
438	7436	966	7047	7344	8748	2339	1	7047	966	8738	1440
439-1	4036	971-1	8673	7346	13337	2341	1434	7049	7981	8740	1473
439-2	4035	971-2	8674	7971	1481	2341	1444	7050	7982	8741	1474
440	7094	980	7042	7972	1482	2342	427	7051	7983	8742	1475
551	4766	980	10513	7973	1483	2936	911	7072	11024	8744	1471
553	7434	982	7040	7976	1479	3266	580	7089	125	8745	1472
555	4034	982	10512	7977	8737	4014	931	7090	125	8746	1476
558	4018	985	10511	7978	8736	4016	601	7091	126	8747	1477
580	3266	1434	2341	7979	8733	4017	933	7092	433	8748	7344
601	4016	1440	8738	7979	8735	4018	558	7093	9021	8749	7346
603	8677	1444	2341	7981	7049	4026	913	7094	440	8750	7343
660	1051	1471	8744	7982	7050	4027	914	7412	6914	8751	7343
661	1051	1472	8745	7983	7051	4028	915	7414	6915	8752	1481
911	2936	1473	8740	7985	7045	4029	916	7416	6916	8765	960
912	4762	1474	8741	7991	10642	4032	934	7434	553	10642	7991
913	4026	1475	8742	9021	7093	4032	932	7435	417	10511	985
914	4027	1476	8746	11024	7072	4034	555	7436	438	10512	982
915	4028	1477	8747			4035	439	8102	6921	10513	980

6-ktSchlüsselweiten	DIN	ISO
M 10	17 mm	16 mm
M 12	19 mm	18 mm
M 14	22 mm	21 mm
M 22	32 mm	34 mm

Tab. 3: Änderungen bei Sechskantschrauben und -muttern

DIN	ISO →	EN	Abmessungs-	Änderungen ²
Diii		1	bereich ¹	Andorangen
558	(DIN ISO) 4018	(DIN EN) 24018	Ø M 10, 12, 14, 22	Neue ISO-Schlüsselweiten
931	4014	24016	W W 10, 12, 14, 22	Neue 130-30 nusseiweiten
933	4017	24014		
960	8765	28765	alle übrigen Ø	keine = DIN und ISO identisch
961	8676	28676	alle ubligeri Ø	Reine – Dirv und 130 identisch
601	4016	24016	Ø M 10, 12, 14, 22	Schrauben: neue ISO-Schlüsselweiten
m. Mu. 555	m. Mu. 4034	24034	S III 10, 12, 11, 22	Muttern: neue ISO-SW + ISO-Höhen
28030	4014	24014	übrige Ø bis M 39	Schrauben: keine = DIN und ISO identisch Muttern: neue ISO-Höhen
m. Mu. 555	m. Mu. 4032	24032	übrige Ø über M 39	keine = DIN und ISO identisch
561	-	-	Ø M 12, 16	neue ISO-Schlüsselweiten
564	-	-	alle übrigen Ø	keine
609	-	-	Ø M 10, 12, 14, 22	neue ISO-Schlüsselweiten
610	-	-	alle übrigen Ø	keine
7968 Mu	Schrb: -	-	M 12, 22	Schrauben: neue ISO-Schlüsselweiten
7990 Mu	Mu. n. ISO 4034	24034		Muttern: neue ISO-SW + ISO-Höhen
			alle übrigen Ø	Schrauben: keine
				Muttern: neue ISO-Höhen
186/261	Schrb: -		Ø M 10, 12, 14, 22	Schrauben: keine
525	Mu. n. ISO 4034	24034		Muttern: neue ISO-SW + ISO-Höhen
603				
604				
605			alle übrigen Ø	Schrauben: keine
607				Muttern: neue ISO-Höhen
608				
7969				
11014				
439 T1 (A = ohne Fase)	4036	24036	Ø M 10, 12, 14, 22	neue ISO-Schlüsselweiten (keine Höhenveränderung)
439 Tz	4035	24035	alle übrigen Ø	keine = DIN und ISO identisch
(B = mit Fase)	= Regel-Gew.			(keine Höhenveränderung)
	8675 = Fein-Gew.	28675		
555	4034 (ISO-Typ 1)	24034	Ø M 10, 12, 14, 22	neue ISO-SW + neue ISO-Höhen
934 Rd. 6, 8, 10	4032 = Regel-Gew. (ISO-Typ 1)	24032		
Fkl. 12	4033	24033	übrige Ø bis M 39	neue ISO-Höhen (keine SW-Veränderung)
	= Regel-Gew. (ISO-Typ 2)			
Fkl. 6, 8, 10		28673	Ø über M 39	keine DIN und ISO identisch
Fkl. 6, 8, 10 557	(ISO-Typ 2) = Fein-Gew.	28673	Ø über M 39 Ø M 10, 12, 14, 22	keine DIN und ISO identisch neue ISO-Schlüsselweiten
	(ISO-Typ 2) = Fein-Gew.	28673		

Fortsetzung Tab. 3: Änderungen bei Sechskantschrauben und -muttern,

DIN	ISO → (DIN ISO)	EN (DIN EN)	Abmessungs- bereich ¹	Änderungen ²
986	-	-	alle übrigen Ø	keine
1587	-	-		

Tab. 4: Maßliche Änderungen bei Sechskantschrauben und -muttern

Nennmaß d	Schlüss	elweite s		Mutternhöh	e m min-max	
zu vermeiden-	DIN	ISO	DIN	ISO	DIN	ISO
de Größen			555	4034	934	4032 (RG)
						8673 (FG)
				ISO-Typ 1		ISO-Typ 1
M 1	2,5	-	-	0,55-0,8	-	-
M 1,2	3	3	-	-	0,75-1	-
M 1,4	3	3	-	-	0,95-1,2	-
M 1,6	3	,2	-	-	1,05-1,3	1,05-1,3
M 2	4	1	-	-	1,35-1,6	1,35-1,6
M 2,5	į	5	-	-	1,75-2	1,75-2
М 3	5	,5	-	-	2,15-2,4	2,15-2,4
(M 3,5)	(3	-	-	2,55-2,8	2,55-2,8
M 4	7	7	-	-	2,9-3,2	2,9-3,2
M 5	3	3	3,4-4,6	4,4-5,6	3,7-4	4,4-4,7
M 6	10		4,4-5,6	4,6-6,1	4,7-5	4,9-5,2
(M 7)	1	1	-	-	5,2-5,5	-
M 8	1	3	5,75-7,25	6,4-7,9	6,14-6,5	6,44-6,8
M 10	17	16	7,25-8,75	8-9,5	7,64-8	8,04-8,4
M 12	19	18	9,25-10,75	10,4-12,2	9,64-10	10,37-10,8
(M 14)	22	21	-	12,1-13,9	10,3-11	12,1-12,8
M 16	2	4	12,1-13,9	14,1-15,9	12,3-13	14,1-14,8
(M 18)	2	8	-	15,1-16,9	14,3-15	15,1-15,8
M 20	3	0	15,1-16,9	16,9-19	14,9-16	16,9-18
(M 22)	32	34	17,1-18,9	18,1-20,2	16,9-18	18,1-19,4
M 24	3	6	17,95-20,05	20,2-22,3	17,7-19	20,2-21,5
(M 27)	4	1	20,95-23,05	22,6-24,7	20,7-22	22,5-23,8
M 30	4	6	22,95-25,05	24,3-26,4	22,7-24	24,3-25,6
(M 33)	5	0	24,95-27,05	27,4-29,5	24,7-26	27,4-28,7
M 36	5	5	27,95-30,05	28-31,5	27,4-29	29,4-31
(M 39)	6	0	29,75-32,25	31,8-34,3	29,4-31	31,8-33,4
M 42	65		32,75-35,25	32,4-34,9	32,4-34	32,4-34
(M 45)	70		34,75-37,25	34,4-36,9	34,4-36	34,4-36
M 48	7	5	36,75-39,25	36,4-38,9	36,4-38	36,4-38
(M 52)	8	0	40,75-43,25	40,4-42,9	40,4-42	40,4-42
M 56	8	5	43,75-46,25	43,4-45,9	43,4-45	43,4-45
(M 60)	9	0	46,75-49,25	46,4-48,9	46,4-48	46,4-48
M 64	9	5	49,5-52,5	49,4-52,4	49,1-51	49,1-51
> M 64			bis M 100 x 6	-	bis M 160 x 6	-/-

Gegenüberstellung Schlüsselweiten und Mutternhöhen DIN: ISO siehe Tabelle C
 Zuordnung Normen, mechanische Eigenschaften für Muttern aus Stahl siehe Tabelle C

Fortsetzung Tab. 4: Änderungen bei den Maßen von Sechskantschrauben und -muttern

Nennmaß d	Schlüsselweite s		chlüsselweite s Mutternhöhe m min-max				
zu vermeidende Größen		DIN	ISO	DIN	ISO	DIN	ISO
				555	4034	934	4032 (RG)
							8673 (FG)
					ISO-Typ 1		ISO-Typ 1
Mutternhöhenfaktor	m		≤ M 4	-	-		0,8
	d	ca.	M 5-M 39	0,8	0,83-1,12	0,8	0,84-0,93
			≥ M 42		~ 0,8		0,8
Produktklasse				C (g	rob)	≤ M 16 = A (mittel) > M 16 = B (mittelgrob)	
Gewinde-Toleranz				7	Н	6 H	
Festigkeitsklasse			Kernbereich	Ę	5	6, 8	3,10
Stahl			~ M 5-39	M 16 < d ≤	M 39 = 4,5	(ISO 8673 = F	kl. 10 ≤ M 16)
			> M 39	nach Vere	einbarung	nach Vere	einbarung
Mechanische Eigenschaften		DIN 267	ISO 898	DIN 267	ISO 898		
nach Norm				Teil 4	Teil 2	Teil 4	Teil 2 (RG)
							Teil 6 (FG)

Tab. 5: Änderungen bei Metrische Kleinschrauben

DIN (alt)	ISO	DIN (neu bzw. DIN EN	Titel	Änderungen
84	1207	DIN EN 21207	Zylinderschrauben mit Schlitz; Produktklasse A (ISO 1207: 1992)	teilweise Kopfhöhe und -durchmesser
85	1580	DIN EN 21580	Flachkopfschrauben m. Schlitz; Produktklasse A	teilweise Kopfhöhe und -durchmesser
963	2009	DIN EN 22009	Senkschrauben mit Schlitz, Form A	teilweise Kopfhöhe und -durchmesser
964	2010	DIN EN 22010	Linsensenkschrauben mit Schlitz, Form A	teilweise Kopfhöhe und -durchmesser
965	7046-1	DIN EN 27046-1	Senkschrauben mit Kreuzschlitz (Einheitskopf): Produktklasse A, Festigkeitsklasse 4.8	teilweise Kopfhöhe und -durchmesser
965	7046-2	DIN EN 27046-2	Senkschrauben mit Kreuzschlitz (Einheitskopf): Produktklasse A, Festigkeitsklasse 4.8	teilweise Kopfhöhe und -durchmesser
966	7047	DIN EN 27047	Linsen-Senkschrauben mit Kreuz- schlitz (Einheitskopf): Produktklasse A	teilweise Kopfhöhe und -durchmesser
7985	7045	DIN EN 27045	Flachkopfschrauben mit Kreuzschlitz; Produktklasse A	teilweise Kopfhöhe und -durchmesser

Tab. 6: Änderungen bei Stiften und Bolzen

DIN (alt)	ISO	DIN (neu bzw. DIN EN	Titel	Änderungen
1	2339	DIN EN 22339	Kegelstifte; ungehärtet (ISO 2339: 1986)	Länge I inkl. Kuppen
7	2338	DIN EN 22338	Zylinderstifte; ungehärtet (ISO 2338: 1986)	Länge I inkl. Kuppen
1440	8738	DIN EN 28738	Scheiben für Bolzen; Produktklasse A (ISO 8738: 1986)	teilweise Außendurchmesser
1443	2340	DIN EN 22340	Bolzen ohne Kopf (ISO 2340: 1986)	nichts Nennenswertes
1444	2341	DIN EN 22341	Bolzen mit Kopf (ISO 2341: 1986)	nichts Nennenswertes
1470	8739	DIN EN 28739	Zylinderkerbstifte mit Einführende (ISO 8739: 1986)	erhöhte Scherkräfte
1471	8744	DIN EN 28744	Kegelkerbstifte (ISO 8744: 1986)	erhöhte Scherkräfte
1472	8745	DIN EN 28745	Passkerbstifte	erhöhte Scherkräfte
1473	8740	DIN EN 28740	Zylinderkerbstifte mit Fase (ISO 8740: 1986)	erhöhte Scherkräfte
1474	8741	DIN EN 28741	Steckkerbstifte (ISO 8741: 1986)	erhöhte Scherkräfte
1475	8742	DIN EN 28742	Knebelkerbstifte - 1/3 der Länge gekerbt (ISO 8742: 1986)	erhöhte Scherkräfte
1476	8746	DIN EN 28746	Halbrundkerbnägel (ISO 8746: 1986)	nichts Nennenswertes
1477	8747	DIN EN 28747	Senkkerbnägel (ISO 8747: 1986)	nichts Nennenswertes
1481	8752	DIN EN 28752	Spannstifte; geschlitzt (ISO 8752: 1987)	nichts Nennenswertes
6325	8734	DIN EN 28734	Zylinderstifte; gehärtet (ISO 8734: 1987)	nichts Nennenswertes
7977	8737	DIN EN 28737	Kegelstifte mit Gewindezapfen; ungehärtet (ISO 8737: 1986)	nichts Nennenswertes
7978	8736	DIN EN 28736	Kegelstifte mit Innengewinde; ungehärtet (ISO 8736: 1986)	nichts Nennenswertes
7979	8733	DIN EN 28733	Zylinderstifte mit Innengewinde; ungehärtet (ISO 8733: 1986)	nichts Nennenswertes
7979	8735	DIN EN 28735	Zylinderstifte mit Innengewinde; gehärtet (ISO 8735: 1987)	nichts Nennenswertes

Tab. 7: Änderungen bei Blechschrauben

DIN (alt)	ISO	DIN (neu bzw. DIN EN	Titel	Änderungen
7971	1481	DIN ISO 1481	Flachkopf-Blechschrauben mit Schlitz (ISO 1481: 1983)	teilweise Kopfhöhe und - durchmesser
7972	1482	DIN ISO 1482	Blechschrauben mit Schlitz, Senkkopf	teilweise Kopfhöhe und - durchmesser
7973	1483	DIN ISO 1483	Blechschrauben mit Schlitz, Linsensenkkopf	teilweise Kopfhöhe und - durchmesser
7976	1479	DIN ISO 1479	Blechschrauben mit Sechskantkopf	teilweise Kopfhöhe
7981	7049	DIN ISO 7049	Blechschrauben mit Kreuzschlitz, Linsenkopf	teilweise Kopfhöhe und - durchmesser
7982	7050	DIN ISO 7050	Blechschrauben mit Kreuzschlitz, Senkkopf	teilweise Kopfhöhe und - durchmesser
7983	7051	DIN ISO 7051	Blechschrauben mit Kreuzschlitz, Linsensenkkopf	teilweise Kopfhöhe und - durchmesser

Tab. 8: Änderungen bei Gewindestiften

DIN (alt)	ISO	DIN (neu bzw. DIN EN	Titel	Änderungen
417	7435	DIN EN 27435	Gewindestifte mit Schlitz und Zapfen (ISO 7431: 1983)	nichts Nennenswertes
438	7436	DIN EN 27436	Gewindestifte mit Schlitz und Ringschneide (ISO 7436: 1983)	nichts Nennenswertes
551	4766	DIN EN 24766	Gewindestifte mit Schlitz und Kegelkuppe (ISO 4766: 1983)	nichts Nennenswertes
553	7434	DIN EN 27434	Gewindestifte mit Schlitz und Spitze (ISO 7431: 1983)	nichts Nennenswertes
913	4026	DIN 913	Gewindestifte mit Innensechskant und Kegelkuppe	nichts Nennenswertes
914	4027	DIN 914	Gewindestifte mit Innensechskant und Spitze	nichts Nennenswertes
915	4028	DIN 915	Gewindestifte mit Innensechskant und Zapfen	nichts Nennenswertes
916	4029	DIN 916	Gewindestifte mit Innensechskant und Ringschneide	nichts Nennenswertes

Tab. 9: Technische Lieferbedingungen und Grundnormen

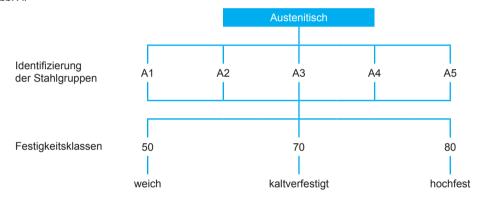
DIN (alt)	ISO	DIN (neu bzw. DIN EN	Titel	Änderungen
267 Teil 20	-	DIN EN 493	Verbindungselemente, Oberflächenfehler, Muttern	keine
267 Teil 21	-	DIN EN 493	Verbindungselemente, Oberflächenfehler, Muttern	keine
DIN ISO 225	225	DIN EN 20225	Mech. Verbindungselemente, Schrauben u. Muttern, Bemaßung (ISO 225: 1991)	keine
DIN ISO 273	273	DIN EN 20273	Mech. Verbindungselemente Durchgangslöcher f. Schrauben (ISO 273: 1991)	keine
DIN ISO 898 Teil 1	898 1	DIN EN 20898 Teil 1	Mech. Eigenschaften v. Verbindungselementen, Schrauben (ISO 898-1: 1988)	keine
267 Teil 4	898 2	DIN ISO 898 Teil 2	Mech. Eigenschaften v. Verbindungselementen, Muttern m. festgel. Prüfkräften (ISO 898-2: 1992)	keine
DIN ISO 898 Teil 6	898 6	DIN EN 20898 Teil 6	Mech. Eigenschaften v. Verbindungselementen, Muttern m. festgel. Prüfkräften (ISO 898-6: 1988)	keine
267 Teil 19	6157-1	DIN EN 26157 Teil 1	Verbindungselemente, Oberflächenfehler, Schrauben für allgemeine Anforderungen	keine
267 Teil 19	6157-3	DIN EN 26157 Teil 3	(ISO 6157-1:1988)	keine
DIN ISO 7721	7721	DIN EN 27721	Verbindungselemente, Oberflächenfehler, Schrauben für allgemeine Anforderungen	keine
267 Teil 9	-	DIN ISO 4042	(ISO 6157-3:1988)	keine
267 Teil 1	-	DIN ISO 8992	Senkschrauben; Gestaltung u. Prüfung von Senkköpfen	keine
267 Teil 5	-	DIN ISO 3269	(ISO 7721: 1983)	keine
267 Teil 11	-	DIN ISO 3506	Teile mit Gewinde - Galvanische Überzüge	keine
267 Teil 12	-	DIN EN ISO 2702	Allgemeine Anforderungen für Schrauben und Muttern	keine
267 Teil 18	8839	DIN EN 28839	Mechanische Verbindungselemente - An- nahmeprüfung	keine
267 Teil 11	-	DIN ISO 3506	Verbindungselemente aus nichtrostenden Stählen - Technische Lieferbedingungen	keine
267 Teil 12	-	DIN EN ISO 2702	Wärmebehandelte Blechschraube aus Stahl - Mechanische Eigenschaften	keine
267 Teil 18	8839	DIN EN 28839	Mech. Eigenschaften von Verbindungselementen, Schrauben und Muttern aus Nichteisenmetallen (ISO 8839: 1986)	keine

II. Mechanische Eigenschaften von Edelstahl Rostfrei

Nichtrostende Stähle werden in drei Stahlgruppen - Austenitisch, Ferritisch und Martensitisch - untergliedert, wobei der austenitische Stahl die größte Verbreitung und Anwendungsmöglichkeiten gefunden hat. Die Stahlgruppen und die Festigkeitsklassen werden, wie im Beispiel verdeutlicht, mit einer vierstelligen Buchstaben- und Ziffernfolge bezeichnet. Weiterhin regelt bei Schrauben und Muttern aus Edelstahl die DIN EN ISO 3506.

Beispiel:

A2 - 80


A = Austenitischer Stahl

2 = Legierungstyp innerhalb der Gruppe A

80 = Zugfestigkeit mindestens 800 N/mm2, kaltverfestigt

II. a) Bezeichnungssystem für nichtrostende Stahlsorten und derer Festigkeitsklassen

Abb. A:

Tab. 10: Gängige nichtrostende Stähle und ihre chemische Zusammensetzung

	Werkstoff- bezeichnung	Werkstoff- Nr.	C %	Si ≤%	Mn ≤%	Cr %	Mo %	Ni %	Altri %
	X 5Cr Ni 1810	1.4301	≤ 0,07	1,0	2,0	17 bis 19	-	8,0 bis 10,5	-
A 2	X 2 Cr Ni 1811	1.4306	≤ 0,03	1,0	2,0	18,0 bis 20,0	-	10,0 bis 12,0	-
	X 8 Cr Ni 19/10	1.4303	≤ 0,12	0,75	2,0	17,0 bis 19,0	-	11,0 bis 13,0	-
A 3	X 6 Cr Ni Ti 1811	1.4541	≤ 0,10	1,0	2,0	17,0 bis 19,0	-	9,0 bis 12,0	Ti ≥ 5 X % C
	X 5 Cr Ni Mo 1712	1.4401	≤ 0,07	1,0	2,0	16,5 bis 18,5	2,0 bis 2,5	10,0 bis 13,0	-
A 4	X 2 Cr Ni Mo 1712	1.4404 316L	≤ 0,03	1,0	2,0	16,5 bis 18,5	2,0 bis 2,5	10 bis 13	-
A 5	X 6 Cr Ni Mo Ti 1712	1.4571	≤ 0,10	1,0	2,0	16,5 bis 18,5	2,0 bis 2,5	10,5 bis 13,5	Ti ≥ 5 X % C

II. b) Einteilung der Festigkeit von Edelstahlschrauben

Die DIN ISO 3506 hat für Verbindungselemente die empfohlenen Stahlsorten zusammengestellt. Hierbei wird fast ausschließlich austenitischer Edelstahl A2 verwendet. Bei sehr hohen Korrosionsbeanspruchungen werden hingegen Chrom- Nickel-Stähle aus der Stahlgruppe A4 herangezogen. In der Tab. 11 sind für die Schraubenverbindungen aus austenitischem Stahl hinsichtlich der mechanischen Festigkeitswerte zu Grunde zu legen.

Mechanische Eigenschaften von Verbindungselementen - Austenitischen Stahlsorten

Tab. 11: Auszug aus DIN EN ISO 3506-1

			Schrauben				
Stahlgruppe	Stahlsorte	Festigkeits- klasse	Zugfestigkeit Rm ¹) N/mm ² min.	0,2 %- Dehngrenze RP 0,2 ¹) N/mm ² min.	Bruch- dehnung A2) mm min.		
	A1, A2, A3 A4 und A5	50	500	210	0,6 d		
austenitisch		70	700	450	0,4 d		
		80	800	600	0,3 d		

Die Zugspannung ist bezogen auf den Spannungsquerschnitt berechnet (siehe DIN EN ISO 3506-1).

II. c) Streckgrenzlasten für Schaftschrauben

Da austenitischen Chrom-Nickel-Stähle nicht härtbar sind, wird eine höhere Streckgrenze nur durch Kaltverfestigung erreicht, welche als Folge des Kaltumformers (z. B. Gewindewalzen) entsteht. Aus der Tabelle 12 sind Streckgrenzlasten für Schaftschrauben nach DIN EN ISO 3506 zu entnehmen.

Tab. 12: Streckgrenzlasten für Schaftschrauben

Nenn- durchmesser	Streckgrenzlasten austenitischer Stähle nach DIN EN ISO 3506 A 2 und A 4 in N					
Festigkeitsklasse	50	70				
M 5	2980	6390				
M 6	4220	9045				
M 8	7685	16470				
M 10	12180	26100				
M 12	17700	37935				
M 16	32970	70650				
M 20	51450	110250				
M 24	74130	88250				
M 27	96390	114750				
M 30	117810	140250				

²⁾ Die Bruchdehnung ist nach 7.2.4 an der jeweiligen Länge der Schraube und nicht an abgedrehten Proben zu bestimmen. d ist der Nenndurchmesser.

II. d) Eigenschaften von Edelstahlschrauben bei erhöhten Temperaturen

Tab. 13: Festigkeitsklasse 70

Nenndurchmesser	Warmstreckgrenzen in N						
Festigkeitsklasse 70	+ 20 °C	+ 100 °C	+ 200 °C	+ 300 °C	+ 400 °C		
M 5	6.390	5.432	5.112	4.793	4.473		
M 6	9.045	7.688	7.236	6.784	6.332		
M 8	16.740	14.000	13.176	12.353	11.529		
M 10	26.100	22.185	20.880	19.575	18.270		
M 12	37.935	32.245	30.348	28.451	26.555		
M 16	70.650	60.053	56.520	52.988	49.455		
M 20	110.250	93.713	88.200	82.688	77.175		
M 24	88.250	75.013	70.600	66.188	61.775		
M 27	114.750	97.538	91.800	86.063	80.325		
M 30	140.250	119.213	112.200	105.188	98.175		

Für die Festigkeitsklasse 50 gelten die Werte der DIN 17440

II. e) Anhaltswerte für Anzugsdrehmomente

Verbindungselemente aus rostfreiem austenitischen Edelstahl benötigen den optimalen Anzugsdrehmoment bei der Verarbeitung. Als Richtwert haben wir Ihnen Tabellen erstellt aus der sie den benötigten Drehmoment in Abhängigkeit der Reibwerte entnehmen können.

Grundsätzlich jedoch ist zu beachten das die in den Tabellen vorgegebenen Werte nur Richtwerte sein können, siehe VDI 2230.

Die Tabelle 14a ist eine vereinfachte Ausführung die die Reibwerte zwischen 0,10 und 0,20 nochmals aufgliedern. Je nach verwendetem Gleitmittel bewegt sich die Reibungszahl beschichteter Schrauben zwischen 0,12 und 0,18. Da diese Reibwerte nicht nur vom Gleitmittel abhängen, ist es zwingend erforderlich zur Bestimmung des Drehmomentes einen Versuch unter Einsatzbedingungen durchzuführen.

Tab. 14a: Vereinfachte Anhaltswerte für Anzugsdrehmomente für Schrauben nach DIN EN ISO 3506 (meistens Gleitbeschichtet)

"Reibungszahl	Anziehdrehmomente MA [Nm] für A2-70, A4-70							
μges."	M4	M5	M6	M8	M10	M12	M16	M20
0,10	1,7	3,4	5,9	14,5	30,0	50,0	121,0	224,0
0,12	2,0	3,8	6,7	16,3	33,0	56,0	136,0	274,0
0,14	2,2	4,2	7,4	17,8	36,0	62,0	150,0	303,0
0,16	2,3	4,6	7,9	19,3	39,0	66,0	162,0	328,0
0,18	2,5	4,9	8,4	20,4	41,0	70,0	173,0	351,0
0,20	2,6	5,1	8,8	21,4	44,0	74,0	183,0	370,0

Tab. 14b: Anhaltswerte für Anzugsdrehmomente für Schrauben nach DIN EN ISO 3506

Reibungszahl	Vorsp	annkräfte Fvma	x. [kN]	Anziehdrehmoment MA [Nm]			
μges. 0,10	50	70	80	50	70	80	
M 3	0,9	1	1,2	0,85	1	1,3	
M 4	1,08	2,97	3,96	0,8	1,7	2,3	
M 5	2,26	4,85	6,47	1,6	3,4	4,6	
M 6	3,2	6,85	9,13	2,8	5,9	8	
M 8	5,86	12,6	16,7	6,8	14,5	19,3	
M 10	9,32	20	26,6	13,7	30	39,4	
M 12	13,6	29,1	38,8	23,6	50	67	
M 14	18,7	40	53,3	37,1	79	106	
M 16	25,7	55	73,3	56	121	161	
M 18	32,2	69	92	81	174	232	
M 20	41,3	88,6	118,1	114	224	325	
M 22	50	107	143	148	318	424	
M 24	58	142	165	187	400	534	
M 27	75			328			
M 30	91			445			
M 33	114			506			
M 36	135			651			
M 39	162			842			

Tab. 14c: Anhaltswerte für Anzugsdrehmomente für Schrauben nach DIN EN ISO 3506

Reibungszahl μges. 0,20	Vorsp	annkräfte Fvma	x. [kN]	Anziehdrehmoment MA [Nm]		
pg001 0,20	50	70	80	50	70	80
M 3	0,6	0,65	0,95	1	1,1	1,6
M 4	1,12	2,4	3,2	1,3	2,6	3,5
M 5	1,83	3,93	5,24	2,4	5,1	6,9
M 6	2,59	5,54	7,39	4,1	8,8	11,8
M 8	4,75	10,2	13,6	10,1	21,5	28,7
M 10	7,58	16,2	21,7	20,3	44	58
M 12	11,1	23,7	31,6	34,8	74	100
M 14	15,2	32,6	43,4	56	119	159
M 16	20,9	44,9	59,8	86	183	245
M 18	26,2	56,2	74,9	122	260	346
M 20	33,8	72,4	96,5	173	370	494
M 22	41	88	118	227	488	650
M 24	47	101	135	284	608	810
M 27	61			502		
M 30	75			680		
M 33	94			779		
M 36	110			998		
M 39	133			1300		

Tab. 14d: Anhaltswerte für Anzugsdrehmomente für Schrauben nach DIN EN ISO 3506

Reibungszahl µges. 0,30	Vorsp	annkräfte Fvma	x. [kN]	Anziehdrehmoment MA [Nm]			
μ300, 0,00	50	70	80	50	70	80	
M 3	0,4	0,45	0,7	1,25	1,35	1,85	
M 4	0,9	1,94	2,59	1,5	3	4,1	
M 5	1,49	3,19	4,25	2,8	6,1	8	
M 6	2,09	4,49	5,98	4,8	10,4	13,9	
M 8	3,85	8,85	11	11,9	25,5	33,9	
M 10	6,14	13,1	17,5	24	51	69	
M 12	9	19,2	25,6	41	88	117	
M 14	12,3	26,4	35,2	66	141	188	
M 16	17	36,4	48,6	102	218	291	
M 18	21,1	45,5	60,7	144	308	411	
M 20	27,4	58,7	78,3	205	439	586	
M 22	34	72	96	272	582	776	
M 24	39	83	110	338	724	966	
M 27	50			599			
M 30	61			809			
M 33	76			929			
M 36	89			1189			
M 39	108			1553			

Tab. 14e: Anhaltswerte für Anzugsdrehmomente für Schrauben nach DIN EN ISO 3506

Reibungszahl μges. 0,40	Vorspannkräfte Fvmax. [kN]			Anziehdrehmoment MA [Nm]			
pgoor o, re	50	70	80	50	70	80	
M 4	0,74	1,60	2,13	1,6	3,3	4,4	
M 5	1,22	2,62	3,5	3,2	6,6	8,8	
M 6	1,73	3,7	4,93	5,3	11,3	15,0	
M 8	3,17	6,80	9,10	12,9	27,6	36,8	
M 10	5,05	10,80	14,40	26,2	56,0	75,0	
M 12	7,38	15,8	21,10	44,6	96,0	128,0	
M 14	10,1	21,70	26,0	71,0	152,0	204,0	
M 16	20,9	44,90	59,80	110	237	316	
M 18	17,5	37,50	50,10	156	334	447	
M 20	22,6	48,4	64,6	223	479	639	
M 22	28,3			303			
M 24	32,6			385			
M 27	41,5			652			
M 30	50,3			881			
M 33	63,0			1013			
M 36	74,0			1296			
M 39	89,0			1694			

Reibungszahlen μG und μK nach DIN 267 Teil 11

Tab. 15: Reibungszahlen µG und µK für Schrauben aus rost- und säurebeständigem Stahl

Schraube	Mutter	μges. Bei Schmierzustand			
aus	aus	ohne Schmierung	MoS2-Paste/Gleitmittel		
A 2 oder A 4	A 2 oder A 4	0,23 - 0,5	0,10 - 0,20		
A 2 oder A 4	AIMgSi	0,28 - 0,35	0,08 - 0,16		

Reibungszahlen µges. setzen einen gleichen Reibungswert im Gewinde und unter dem Kopf resp. Mutternauflage voraus.

Tab. 16: Reibungszahlen µG und µK für Schrauben und Muttern aus rost- und säurebeständigem Stahl

Schraube	Mutter	Schmiermittel		Nachgiebigkeit	Reibungszahl		
aus	aus	im Gewinde	unter Kopf	der Verbin- dung	im Gewinde μG	unter Kopf μK	
		ohne	ohne	sehr groß	0,26 bis 0,50	0,35 bis 0,50	
	A 2	Spezialsch (Chlorpara	nmiermittel iffin-Basis)		0,12 bis 0,23	0,08 bis 0,12	
		Korossionsschutzfett			0,26 bis 0,45	0,25 bis 0,35	
A 2		ohne	ohne		0,23 bis 0,35	0,12 bis 0,16	
7.2		Spezialschmiermittel (Chlorparaffin-Basis)		klein	0,10 bis 0,16	0,08 bis 0,12	
		ohne			0,32 bis 0,43	0,08 bis 0,11	
	AIMgSi	Spezialschmiermittel (Chlorparaffin-Basis)		sehr groß	0,28 bis 0,35	0,08 bis 0,11	

Verbindungselemente aus nichtrostenden Stählen neigen gelegentlich zum Fressen. Abhilfe kann man durch den Einsatz von reibungsmindernden Mitteln erreichen. Dies ist jedoch bei den Reibwerten entsprechend zu berücksichtigen.

II. f) Magnetische Eigenschaften von austenitischen nichtrostendem Edelstahl

Alle Verbindungselemente aus austenitischen nichtrostenden Stählen sind im Allgemeinen unmagnetisch; nach der Kaltverformung kann eine gewisse Magnetisierbarkeit vorliegen.

Jeder Werkstoff wird durch seine Fähigkeit, magnetisierbar zu sein, gekennzeichnet, was sogar für nichtrostenden Stahl gilt. Nur Vakuum wird aller Wahrscheinlichkeit nach völlig unmagnetisch sein. Das Maß für die Werkstoffpermeabilität in einem Magnetfeld ist der magnetische Permeabilitätwert µr für diesen Werkstoff im Verhältnis zu Vakuum. Der Werkstoff hat eine geringe magnetische Permeabilität, wenn µr nahe dem Wert 1 ist.

Beispiele: A2: $\mu r \sim 1.8$ / A4: $\mu r \sim 1.015$ / A4L: $\mu r \sim 1.005$ / AF1: $\mu r \sim 5$

Internationaler Werkstoff-Vergleich

W-Nr.	Kurzname	AISI ¹	UNS ²	SS ³	AFNOR ⁴	BS ⁵
1.4006	X12Cr13	410		2302	Z 10 C 13	410 S 21
1.4016	X6Cr17	430		2320	Z 8 C 17	430 S 17
1.4301	X5CrNi18-10	304	S 30400	2332	Z 6 CN 18.09	304 S 15
1.4303	X10CrNiS18-9	305	S 30500	x	Z5CNI 8-11FF	305 S 17/19
1.4305	X 10 CrNiS 18-9	303	S 30300	2346	Z 8 CNF 18.09	304 S 31
1.4306	X 2 CrNi 19-11	304 L	S 30403	2352	Z 2 CN 18.10	304 S 11
1.4307	X2CrNi18-9	304L	S 30403			
1.4310	X 12 CrNi 17 7	301	S 30100	2331	Z 12 CN 18.08	301 S 22
1.4567	X3CrNiCu18-9-4	304	х	х	x	x
1.4541	X6CrNiTi18-10	321				
1.4401	X5CrNiMo17-12-2	316	S 31600	2347	Z 7 CND 17.02.02	316 S 31
1.4404	X2CrNiMo17-12-2	316 L	S 31603	2353	Z 3 CND 18.14.03	316 S 11
1.4578	X3CrNiCuMo17-11-3-2	х				
1.4571	X6CrNiMoTi17-12-2	316Ti	S 31635	2350	Z 6 CNDT 17.12	320 S 31
1.4439	X2CrNiMoN17-13-5	317 LMN	S 31726	2562	Z 1 NCDU 25.20	
1.4541	X6CrNiTi 18-10	321		2337	Z 6 CNT 18-10	х
1.4362	X2CrNiN32-4	2304				
1.4462	X2CrNiMoN22-5-3	2205	S 31600	2377	(Z 5 CNDU 21.08)	
1.4539	X1NiCrMoCu25-20-5	904 L	N 08904			
1.4565	X2CrNiMnMoNbN25-18-5-4	х				
1.4529	X1NiCrMoCuN25-20-7	х	N 08926			

¹ AISI = American Iron and Steel Institute

ASTM = American Society for Testing and Materials

UNS = Unified Numbering System

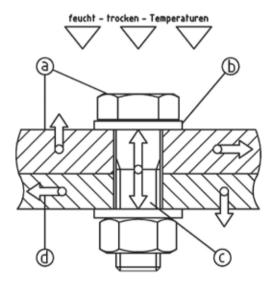
³ SS = Swedish Standard

⁴ AFNOR = Association Française de Normalisation

⁵ BS = British Standard

III. Korrosionsbeständigkeit von A2 und A4

Austenitische Edelstähle wie bsw. A2 und A4 fallen auf Grund ihrer Bestandteile unter die Kategorie des "aktiven" Korrosionsschutzes.


Diese rostfreien Edelstähle müssen mindestens 16 % Chrom (Cr) enthalten und sind beständig gegen oxidierende Angriffsmittel. Das Erhöhen der Cr-Gehalte und gegebenfalls weiterer Legierungsbestandteile wie Nickel (Ni), Molybdän (Mo), Titan (Ti) oder Niob (Nb) verbessern die Korrosionsbeständigkeit. Diese Zusätze beeinflussen zusätzlich auch die mechanischen Eigenschaften. Dies muss je nach Anwendung beachtet werden. Andere Legierungsbestandteile werden nur zur Verbesserung der mechanischen Eigenschaften, z. B. Stickstoff (N), oder der spanabhebenden Bearbeitbarkeit, z. B. Schwefel (S), zugesetzt.

Bei der Kaltumformung kann eine gewisse Magnetisierbarkeit der Verbindungselemente entstehen. Im Allgemeinen sind austenitische Edelstähle jedoch nicht magnetisch. Die Korrosionsbeständigkeit wird davon aber nicht beeinflusst. Die Magnetisierung durch Kaltverfestigung kann gar so weit gehen, dass das Stahlteil an einem Magnet haften bleibt.

In der Praxis ist zu beachten, dass eine Reihe unterschiedlicher Korrosionsarten auftreten können. Die am häufigsten vorkommenden Korrosionsarten bei rostfreiem Edelstahl sind im in nachstehender Abbildung dargestellt und im Anschluss aufgeführt:

Abbildung der häufigsten Korrosionsarten bei Schraubenverbindungen

MEDIUM

- a. Flächenabtragende Korrosion, Lochfras:
- Kontaktkorrosion
- :. Spannungsrißkorrosion
- d. mechanische Einwirkungen

III. a) Fremdrost und seine Entstehung

Durch festhaftende Partikel eines Kohlenstoffstahls ("normaler Stahl") entsteht Fremdrost auf der Edelstahloberfläche, die sich durch Einwirkung von Sauerstoff in Rost umwandeln. Sollten solche Stellen nicht gereinigt und entfernt werden, kann dieser Rost auch bei austenitischem Edelstahl eine elektrochemische Lochfraßkorrosion hervorrufen.

Fremdrost entsteht beispielsweise durch:

- Benutzung von Werkzeugen, mit denen im Vorfeld Kohlenstoffstahl bearbeitet wurde.
- Funkenflug bei Arbeiten mit einem Winkelschleifer oder Schleifstaub oder bei Schweißarbeiten.
- · Kontakt von Gegenständen, die rosten, mit einer Edelstahloberfläche.
- Abtropfen von rostdurchsetztem Wasser auf Edelstahloberfläche.

III. b) Spannungsrisskorrosion

Durch Schweißen entstandene Eigenspannungen können zu Spannungsrisskorrosion führen. In der Regel jedoch entsteht die Spannungsrisskorrosion in Industrieatmosphäre eingesetzten Bauteilen, unter starker mechanischer Zugund Biegebelastung.

Besonders empfindlich gegen Spannungsrisskorrosion sind austenitische Stähle in chlorhaltiger Atmosphäre. Der Einfluss der Temperatur ist hierbei erheblich. Als kritische Temperatur sind 50 °C zu nennen.

III. c) Flächenabtragende Korrosion

Die gleichmäßige Flächenkorrosion, auch abtragende Korrosion genannt, bezeichnet sich dadurch, dass die Oberfläche gleichmäßig abgetragen wird. Diese Form der Korrosionsart kann durch eine gezielte Werkstoffauswahl verhindert werden.

Herstellerwerke haben auf Grund von Laborversuchen Beständigkeitstabellen veröffentlicht, welche Hinweise über das Verhalten der Stahlsorten bei verschiedenen Temperaturen und Konzentrationen in den einzelnen Medien geben (siehe Abschnitt III f Tab.17 & 18).

III. d) Lochfraßkorrosion

Lochfraßkorrosion zeigt sich durch einen flächigen Korrosionsabtrag mit zusätzlicher Mulden- und Lochbildung.

Hierbei wird die Passivschicht örtlich durchbrochen. Bei Edelstahl Rostfrei in Kontakt mit chlorhaltigem Wirkmedium kommt es auch zu alleinigem Lochfraß mit nadelstichartigen Einkerbungen in den Werkstoff. Auch Ablagerungen und Rost können Ausgangspunkte von Lochkorrosion sein. Aus diesem Grunde sind alle Verbindungselemente regelmäßig von Rückständen und Ablagerungen zu reinigen.

Die austenitischen Stähle wie A2 und A4 sind gegen Lochfraß beständiger als ferritische Chrom-Stähle.

III. e) Kontaktkorrosion

Wenn zwei Bauteile unterschiedlicher Zusammensetzung sich in metallischem Kontakt befinden und Feuchtigkeit in Form eines Elektrolyten vorhanden ist, entsteht Kontaktkorrosion. Das unedlere Element wir hierbei angegriffen und zerstört.

Bitte beachten Sie folgende Punkte, um Kontaktkorrosion zu verhindern:

- Kontaktvermeidung der Verbindung mit elektrolytischem Medium.
- z. B. durch Gummi, Kunststoffe oder Anstriche sollten Metalle isoliert werden, so dass kein Kontaktstrom an der Kontaktstelle fließen kann.
- Nach Möglichkeit ungleiche Werkstoffpaarungen vermeiden. Als Beispiel sollten Schrauben, Muttern und Scheiben den zu verbindenden Bauteilen angepasst werden.

III. f) Korrosive Medien in Verbindung mit A2 und A4

Die Tabellen 17 und 18 zeigen einen Überblick über die Beständigkeit von A2 und A4 in Verbindung mit verschiedenen korrosiven Medien. Sie haben hier eine optimale Vergleichsmöglichkeit. Jedoch bleibt zu beachten, dass die angegebenen Werte nur als Anhaltspunkte dienen.

Tab. 17: Übersicht über die chemische Beständigkeit von A2 und A4

Angriffsmittel	Konzentration	Temperatur	"Beständi	gkeitsgrad	
		in °C	A 2	A 4	
Aceton	alle	alle	A 2	A 4	
Äthyläther	-	alle	Α	Α	
Äthylalkohol	alle	20	Α	Α	
Ameisensäure	10%	20 kochend	A B	A B	
Ammoniak	alle	20 kochend	A A	A A	
Benzin jeder Art	-	alle	A	A	
Benzoesäure	alle	alle	A	A	
Benzol	-	alle	A	A	
Bier	-	alle	A	A	
Blausäure	-	20	A	A	
Blut	-	20	Α	Α	
Bonderlösung	-	98	A	A	
"Chlor: trock. Gas feuchtes Gas"		20 alle	A D	A D	
Chloroform	alle	alle	Α	Α	
Chromsäure	"10% rein 50% rein"	20 kochend 20 kochend	A C B D	A C B D	
Entwickler (photogr.)	-	20	А	Α	
Essigsäure	10%	20 kochend	A A	A A	
Fettsäure	technisch	150 180 200-235	A B C	A A A	
Fruchtsäfte	-	alle	Α	Α	
Gerbsäure	alle	alle	Α	Α	
Glycerin	konz.	alle	Α	Α	
Industrieluft	-	-	Α	Α	
Kaliumpermanganat	10%	alle	Α	Α	
Kalkmilch	-	alle	Α	Α	
Kohlendioxid	-	-	Α	Α	
Kupferazetat	-	alle	Α	Α	
Kupfernitrat	-	-	Α	Α	
Kupfersulfat	alle	alle	Α	Α	
Magnesiumsulfat	ca. 26%	alle	Α	Α	
Meerwasser	-	20	A	A	
Methylalkohol	alle	alle	Α	Α	

Fortsetzung Tab. 17: Übersicht über die chemische Beständigkeit von A2 und A4

Angriffsmittel	Konzentration	Temperatur	"Beständigkeitsgrad				
		in °C	A 2	A 4			
Milchsäure	1,5% 10%	alle 20 kochend	A A C	A A A			
Natriumcarbonat	kalt gesättigt	alle	Α	А			
Natriumhydroxid	20% 50%	20 kochend 120	A B C	A B C			
Natriumnitrat	-	alle	Α	Α			
Natriumperchlorat	10%	alle	Α	Α			
Natriumsulfat	kalt gesättigt	alle	Α	Α			
Obst	-	-	Α	Α			
Öle (mineral. und pflanzl.)	-	alle	A	А			
Oxalsäure	10% 50%	20 kochend kochend	B C D	A C C			
Petroleum	-	alle	Α	Α			
Phenol	rein	kochend	В	Α			
Phosphorsäure	10% 50% 80% konz.	kochend 20 kochend 20 kochend 20 kochend	A A C B D B	A A B A C A D			
Quecksilber	-	bis 50	Α	Α			
Quecksilbernitrat	-	alle	Α	Α			
Salicylsäure	-	20	Α	Α			
Salpetersäure	bis 40% 50% 90%	alle 20 kochend 20 kochend	A A B A C	A A B A C			
Salzsäure	0,2% 2% bis 10%	20 50 20 50 20	B C D D	B B D D			
1% Schwefelsäure	bis 70 2,5% 5% 10%	B kochend bis 70 kochend 20 > 70 20 70	A B C B C C	B A C A B C			
	60%	alle	D	D			

Fortsetzung Tab. 17: Übersicht über die chemische Beständigkeit von A2 und A4

Angriffsmittel	Konzentration	Temperatur	"Beständigkeitsgrad				
		in °C	A 2	A 4			
Schweflige Säure	wässrige Lösung	20	А	А			
Schwefeldioxyd	-	100-500 900	C D	A C			
Teer	-	heiß	Α	Α			
Wein	-	20 und heiß	Α	A			
Weinsäure	bis 10% über 10% bis 50% 75%	20 kochend 20 kochend kochend	A B A C C	A A C C			
Zitronensaft	-	20	Α	A			
Zitronensäure	bis 10% 50%	alle 20 kochend	A A C	A A B			
Zuckerlösung	-	alle	A	A			

Tab. 18: Einteilung des Beständigkeitsgrades in verschiedene Gruppen

Beständigkeitsgrad	Beurteilung	Gewichtsverlust in g/m2h
А	vollkommen beständig	< 0,1
В	praktisch beständig	0,1 - 1,0
С	wenig beständig	1,0 - 10
D	unbeständig	> 10

IV. Auszug aus der bauaufsichtlichen Zulassung Z-30.3-6 vom 20. April 2009 "Erzeugnisse, Verbindungsmittel und Bauteile aus nichtrostenden Stählen"

Tab. 19: Einteilung der Stahlsorten nach Festigkeitsklassen und Korrosionswiderstandsklassen

Stahlsorte ¹⁾			Stahlsorte ¹⁾ Restigkeitsklassen ³⁾ und			en ³⁾ und Er	³⁾ und Erzeugnisformen ⁴⁾		
Lfd. Nr.	Kurzname	W-Nr.	Gefüge ²⁾	S 235	S 275	S 355	S 460	S 690	Korrosions- widerstands- klasse ^{5) 6)}
1	X2CrNi12	1.4003	F	B, Ba, H, P	D, H, S, W	D, S	D, S		I / gering
2	X6Cr17	1.4016	F	D, S, W					
3	X5CrNi18-10	1.4301	А	B, Ba, D, H, P, S, W	B, Ba, D, H, P, S	B, Ba, D, H, S	Ba, D, H, S	S	
4	X2CrNi18-9	1.4307	A	B, Ba, D, H, P, S, W	B, Ba, D, H, P, S	Ba, D, H, S	Ba, D, S	s	
5	X3CrNiCu18-9-4	1.4567	Α	D, S, W	D, S	D, S	D, S		II / mäßig
6	X6CrNiTi18-10	1.4541	А	B, Ba, D, H, P, S, W	B, Ba, D H, P, S	Ba, D, H, S	Ba, D, H, S		
7	X2CrNiN18-7	1.4318	А			B, Ba, D, H, P, S	B, Ba, H		
8	X5CrNiMo17-12-2	1.4401	А	B, Ba, D, H, P, S, W	B, Ba, D, H, P, S	Ba, D, H, S	Ba, D, S	S	
9	X2CrNiMo17-12-2	1.4404	А	B, Ba, D, H, P, S, W	B, Ba, D, H, P, S	Ba, D, H, S	Ba, D, H, S	D, S	
10	X3CrNiCuMo17-11-3-2	1.4578	Α	D, S, W	D, S	D, S	D, S		III / mittel
11	X6CrNiMoTi17-12-2	1.4571	A	B, Ba, D, H, P, S, W	B, Ba, D, H, P, S	Ba, D, H, S	Ba, D, H, S	D, S	
12	X2CrNHiMoN17-13-5	1.4439	А		B, Ba, D, H, S, W				
13	X2CrNiN23-4	1.4362	FA				B, Ba, D, S, W	D, S	
14	X2CrNiMN22-5-3	1.4462	FA				B, Ba, D, P, S, W	D, S	
15	X1NiCrMoCu25-20-5	1.4539	А	B, Ba, D, H, P, S, W	B, Ba, D, P, S	D, P, S	D, S	D, S	
16	X2CrNiMnMoNbN25-18-5-4	1.4565	А				B, Ba, D, S, W		IV / stark
17	X1NiCrMoCuN25-20-7	1.4529	А		B, D, S, W	B, D, H, P, S	D, P, S	D, S	
18	X1CrNiMoCuN20-18-7	1.4547	Α		В, Ва	В, Ва			

¹⁾ nach DIN EN 10088-1:2005-09

²⁾ A = Austenit; F = Ferrit; FA = Ferrit-Austenit (Duplex)

³⁾ Die der jeweils untersten Festigkeitsklasse folgenden Festigkeitsklassen sind durch Kaltverfestigung mittels Kalt verformung erzielt.

⁴⁾ B = Blech; Ba = Band und daraus gefertigte Bleche; D = Draht, gezogen; H = Hohlprofile; P = Profile; S = Stäbe; W = Walzdraht

⁵⁾ gilt nur für metallisch blanke Oberflächen. Bei möglicher Kontaktkorrosion besteht Gefahr für das unedlere Metall.

⁶⁾ erforderliche Korrosionswiderstandsklassen siehe Tabelle 11.

Tab. 20: Werkstoffauswahl bei atmosphärischer Exposition

Einwirkung		Exposition	Kriterien und Beispiele	Korrosionswider- standsklasse				
			Delapiele	-1	II	III	IV	
Feuchte,	SF0	trocken	U < 60%	Χ				
Jahresmittelwert U der	SF1	selten feucht	60% ≤ U < 80%	Χ				
Feuchte	SF2	häufig feucht	80% ≤ U < 95%	Χ				
	SF3	dauerfeucht	95% < U		Х			
	SC0	gering	Land, Stadt, M > 10 km, S > 0,1 km	Х				
Chloridgehalt der Umgebung, Entfernung M vom Meer, Abstand S belebter Straßen	SC1	mittel	Industriegebiet, 10 km ≥ M > 1 km, 0,1 km ≥ S > 0,01 km		x			
mit Streusalzeinsatz	SC2	hoch	M ≤ 1 km S ≤ 0,01 km			X ¹⁾		
	SC3	sehr hoch	Hallenbäder, Straßentunnel				X ²⁾	
5	SR0	gering	Land, Stadt	Χ				
Belastung durch redoxwirk- same Stoffe (z.B. SO ₂ , HOCI,	SR1	mittel	Industrie			X ¹⁾		
CI ₂ , H ₂ O ₂)	SR2	hoch	Hallenbäder, Straßentunnel				X ²⁾	
	SH0	alkalisch (z.B. Kontakt mit Beton)	9 < pH	X				
	SH1	neutral	5 < pH ≤ 9	Χ				
pH-Werte an der Oberfläche	SH2	leicht sauer (z.B. Kontakt mit Holz)	3 < pH ≤ 5		Х			
	SH3	Sauer (Einwirkung von Säuren)	pH ≤ 3			Х		
	SL0	innen	beheizte und nicht beheizte Innenräume	Х				
	SL1	außen, frei beregnet	frei stehende Konstruktionen		X ³⁾			
Lage der Bauteile	SL2	außen, überdacht	Überdachte Konstruktionen		X ³⁾			
	SL3	außen, unzugänglich ⁴⁾ , Umgebungsluft hat Zutritt	hinterlüftete Fassaden			x		

Die Einwirkung, die die höchste Korrosionswiderstandsklasse (KWK) ergibt, ist maßgebend. Aus dem Zusammentreffen verschiedener Einwirkungen ergeben sich keine höheren Anforderungen.

Durch regelmäßige Reinigung zugänglicher Konstruktion oder direkte Beregnung wird die Korrosionsbelastung erheblich verringert, so dass um eine KWK abgemindert werden kann. Bei möglicher Aufkonzentration der Stoffe auf Oberflächen ist eine KWK höher zu wählen.

Durch regelmäßige Reinigung zugänglicher Konstruktion kann die Korrosionsbelastung erheblich verringert wer den, so dass Abminderung um eine KWK möglich ist.

³⁾ Bei Begrenzung der Lebensdauer auf 20 Jahre ist eine Abminderung auf KWK I möglich, wenn Lochkorrosion 100 µm toleriert wird (keine optischen Anforderungen).

⁴⁾ Als unzugänglich werden Konstruktionen eingestuft, deren Zustand nicht oder nur unter erschwerten Bedingungen kontrollierbar ist und die im Brandfall nur mit sehr großem Aufwand saniert werden können.

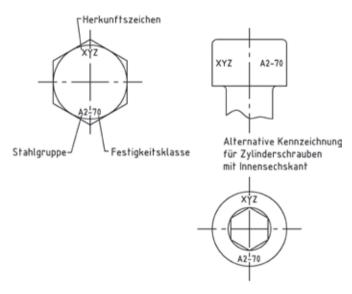
Tab. 21: Stahlsorten für Verbindungsmittel mit Zuordnung zu Stahlgruppen nach DIN EN ISO 3506 Teile 1 und 2 sowie Kennzeichnung nach Abschnitt 2.2.2 und maximale Nenndurchmesser

Stahlsorte			Korrosions- widerstands- klasse ¹⁾	Kennzeichnung für Schrauben mit Kopf in Anlehnung an DIN EN ISO 3506-1			Gew Stif M S An DIN E	nnzeichnung für windestangen, tiftschrauben, Muttern und Scheiben in Anlehnung an EN ISO 3506-1+2 stigkeitsklasse		
lfd. Nr.	Kurzname	W-Nr.	Gruppe		50	70	80	50	70	80
3	X5CrNi18-10	1.4301	A2		≤ M 39	≤ M 24	≤ M 20	≤ M 64	≤ M 45	≤ M 24
4	X2CrNi18-9	1.4307	A2L	II / mäßig	≤ M 39	≤ M 24	≤ M 20	≤ M 64	≤ M 45	≤ M 24
5	X3CrNiCu18-9-4	1.4567	A2L		≤ M 24	≤ M 16	≤ M 12	≤ M 24	≤ M 16	≤ M 12
6	X6CrNiTi18-10	1.4541	A3		≤ M 39	≤ M 20	≤ M 16	≤ M 64	≤ M 30	≤ M 24
8	X5CrNiMo17-12-2	1.4401	A4		≤ M 39	≤ M 24	≤ M 20	≤ M 64	≤ M 45	≤ M 24
9	X2CrNiMo17-12-2	1.4404	A4L		≤ M 39	≤ M 24	≤ M 20	≤ M 64	≤ M 45	≤ M 24
10	X3CrNiCuMo17-11-3-2	1.4578	A4L	III / mittel	≤ M 24	≤ M 16	≤ M 12	≤ M 24	≤ M 16	≤ M 12
11	X6CrNiMoTi17-12-2	1.4571	A5	III / miller	≤ M 39	≤ M 24	≤ M 20	≤ M 64	≤ M 45	≤ M 24
12	X2CrNiMoN17-13-5	1.4439	2)		≤ M 20			≤ M 64		
13	X2CrNiN32-4	1.4362	2)			≤ M 24	≤ M 20		≤ M 64	≤ M 20
14	X2CrNiMoN22-5-3	1.4462	2)			≤ M 24	≤ M 20		≤ M 64	≤ M 20
15	X1NiCrMoCu25-20-5	1.4539	2) 3)		≤ M 39	≤ M 24	≤ M 20	≤ M 64	≤ M 45	≤ M 20
16	X2CrNiMnMoNbN25-18-5-4	1.4565	2) 3)	IV / stark		≤ M 24	≤ M 20		≤ M 64	≤ M 30
17	X1NiCrMoCuN25-20-7	1.4529	2) 3)			≤ M 24	≤ M 20	≤ M 64	≤ M 45	≤ M 45

¹⁾ gemäß Tabelle 10

²⁾ Da derzeit keine normativen Festlegungen gelten, sind diese Stähle mit der Werkstoff-Nummer zu kennzeichnen.

³⁾ Für Verbindungsmittel in Schwimmhallenatmosphäre gilt Anlage 7 zur allgemeinen bauaufsichtlichen Zulassung Z-30-3.6 vom 20. April 2009, Tabelle 10.


V. Kennzeichnung von nichtrostenden Schrauben und Muttern

Die Kennzeichnung von nichtrostenden Schrauben und Muttern muss die Stahlgruppe, die Festigkeitsklasse sowie das Herstellerkennzeichen enthalten.

Kennzeichnung von Schrauben nach DIN ISO 3506-1

Sechskantschrauben und Zylinderschrauben mit Innensechskant ab Nenndurchmesser M5 sind entsprechend dem Bezeichnungssystem deutlich zu kennzeichnen. Die Kennzeichnung sollte, sofern dies möglich ist, auf dem Schraubenkopf angebracht sein.

Abb. C: Auszug aus DIN EN ISO 3506-1

Kennzeichnung von Muttern nach DIN EN ISO 3506-2

Muttern mit Gewinde-Nenndurchmesser ab 5 mm sind entsprechend dem Bezeichnungssystem deutlich zu kennzeichnen. Eine Kennzeichnung auf nur einer Auflagefläche ist zulässig und darf nur vertieft angebracht sein. Wahlweise ist auch eine Kennzeichnung auf den Schlüsselflächen zulässig.

Abb. D: Auszug aus DIN EN ISO 3506-2

